If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x-672=0
a = 5; b = -40; c = -672;
Δ = b2-4ac
Δ = -402-4·5·(-672)
Δ = 15040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15040}=\sqrt{64*235}=\sqrt{64}*\sqrt{235}=8\sqrt{235}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{235}}{2*5}=\frac{40-8\sqrt{235}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{235}}{2*5}=\frac{40+8\sqrt{235}}{10} $
| 15=-392q-1) | | -12g-5g-17g+8g=-18 | | 3n-10=4n | | -{n-8=-3 | | -40=7(-3x+8)-(1-2x | | 3(a+2)-7=13-(a+2 | | 5x-3(x-2)=-6+4x-4 | | 2y=y-2.5 | | 14n+5n-15n=8 | | t−20=6 | | 8x-8x+x+x=18 | | x/11−11=−11 | | 9=-3+9+2n | | 3k-3k+3k-k-k=14 | | u−992=-243 | | -1/5=-2/3-1/2x | | 9q-8q-q+3q-q=16 | | 49(x)=20 | | -8(1+2b)=-104 | | 72(x)=49 | | 6w+5w-8w+2w=5 | | 100(x)=72 | | -8(1+2b=-104 | | 51(x)=12 | | 70(x)=51 | | 72(x)=68 | | 14.1=2^x | | 77(x)=72 | | d−-228=769 | | 5=6y+y | | 70(x)=100 | | -4=5/6t-1/3 |